Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Pham Quang 3 Articles
Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders
Seung-Chae Yoon, Cheon-Hee Bok, Pham Quang, Hyoung-Seop Kim
J Korean Powder Metall Inst. 2007;14(1):26-31.
DOI: https://doi.org/10.4150/KPMI.2007.14.1.026
  • 19 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.

Citations

Citations to this article as recorded by  
  • Finite element analysis of the bending behavior of a workpiece in equal channel angular pressing
    Seung Chae Yoon, Anumalasetty Venkata Nagasekhar, Hyoung Seop Kim
    Metals and Materials International.2009; 15(2): 215.     CrossRef
Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders
Seung-Chae Yoon, Pham Quang, Byong-Sun Chun, Hong-Ro Lee, Hyoung-Seop Kim
J Korean Powder Metall Inst. 2006;13(6):415-420.
DOI: https://doi.org/10.4150/KPMI.2006.13.6.415
  • 12 View
  • 1 Download
AbstractAbstract PDF
Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.
Equal Channel Angular Pressing of Rapidly Solidified Al-20 wt % Si Alloy Powder Extrudates
Seung-Chae Yoon, Soon-Jik Hong, Min-Hong Seo, Pham Quang, Hyoung-Seop Kim
J Korean Powder Metall Inst. 2004;11(2):97-104.
DOI: https://doi.org/10.4150/KPMI.2004.11.2.097
  • 16 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
In this paper processing and mechanical properties of Al-20 wt% Si alloy was studied. A bulk form of Al-20Si alloy was prepared by gas atomizing powders having the powder size of 106-145 µm and powder extrusion. The powder extrudate was subsequently equal channel angular pressed up to 8 passes in order to refine grain and Si particle. The microstructure of the gas atomized powders, powder extrudates and equal channel angular pressed samples were investigated using a scanning electron microscope and X-ray diffraction. The mechanical properties of the bulk sample were measured by compressive tests and a micro Victors hardness test. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength and hardness of the Al-2OSi alloy without deteriorating ductility in the range of experimental strain of 30%.

Citations

Citations to this article as recorded by  
  • Consolidation of Rapidly Solidified Al-20 wt% Si Alloy Powders Using Equal Channel Angular Pressing

    Journal of Korean Powder Metallurgy Institute.2004; 11(3): 233.     CrossRef

Journal of Powder Materials : Journal of Powder Materials